Abstract
Cytochrome P450 (CYP) enzymes metabolize numerous endogenous substrates, such as retinoids, androgens, estrogens and vitamin D, that can modulate important cellular processes, including proliferation, differentiation and apoptosis. The aim of this study is to characterize the expression of CYP genes in CD34+ human cord blood hematopoietic stem and early progenitor cells (CBHSPCs) as a first step toward assessment of the potential biological functions of CYP enzymes in regulating the expansion or differentiation of these cells. CD34+ CBHSPCs were purified from umbilical cord blood via antibody affinity chromatography. Purity of CD34+ CBHSPCs was assessed using fluorescence-activated cell sorting. RNA was isolated from purified CD34+ CBHSPCs and total mononuclear cells (MNCs) for RNA-PCR analysis of CYP expression. Fourteen human CYPs were detected in the initial screening with qualitative RT-PCR in CD34+ CBHSPCs. Further quantitative RNA-PCR analysis of the detected CYP transcripts yielded evidence for preferential expression of CYP2R1 in CD34+ CBHSPCs relative to MNCs; and for greater expression of CYP1B1 in MNCs relative to CD34+ CBHSPCs. These findings provide the basis for further studies on possible functions of CYP2R1 and CYP1B1 in CBHSPCs׳ proliferation and/or differentiation and their potential utility as targets for drugs designed to modulate CD34+ CBHSPC expansion or differentiation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.