Abstract
The cyanine dye 1,1′,3,3,3′,3′-hexamethylindodicarbocyanine iodide (HIDC) protects K562 leukemia cells from photodynamic membrane damage caused by cis-di(4-sulfonatophenyl)diphenylporphine (TPPS 2) and 420 nm light. This wavelength of light is chosen because it is absorbed by TPPS 2, but not by HIDC. The photodynamic system studied may be useful as a model for antineoplastic therapy. A subline of K562 leukemia (K562/DOX), expressing the multidrug-resistance (MDR) phenotype, is found to accumulate smaller amounts of HIDC than the parent cell line and thus has less photoprotection. In the absence of added HIDC, the K562/DOX cell line is more resistant to photodynamic cytotoxicity than the K562 cell line. The resistance of the K562/DOX cell line is not due to a smaller accumulation of TPPS 2 than the K562 cell line. However, when both cell lines are incubated with HIDC and TPPS 2, and then exposed to light, the K562/DOX cell line becomes more sensitive to photodynamic cell damage than the K562 cell line. The combination of a photosensitizer with a cationic or lysomorphotropic photoprotector represents a novel strategy for the eradication of malignant cells expressing the MDR phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.