Abstract

AbstractThe oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies‐rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X‐ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4. The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.