Abstract

A SnS2/graphene (SnS2/G) hybrid was synthesized by a facile one-step solvothermal route using graphite oxide, sodium sulfide, and SnCl4·5H2O as the starting materials. The formation of SnS2 and the reduction of graphite oxide occur simultaneously. Ultrathin SnS2 nanoplates with a lateral size of 5-10 nm are anchored on graphene nanosheets with a preferential (001) orientation, forming a unique plate-on-sheet structure. The electrochemical tests showed that the nanohybrid exhibits a remarkably enhanced cycling stability and rate capability compared with bare SnS2. The excellent electrochemical properties of SnS2/G could be ascribed to the in situ introduced graphene matrix which offers two-dimensional conductive networks, disperses and immobilizes SnS2 nanoplates, buffers the volume changes during cycling, and directs the growth of SnS2 nanoplates with a favorable orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.