Abstract

In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.