Abstract
AbstractWe study an urn process with two urns, initialized with a ball each. Balls are added sequentially, the urn being chosen independently with probability proportional to the $\alpha$th power $(\alpha >1)$ of the existing number of balls. We study the (rare) event that the urn compositions are balanced after the addition of $2n-2$ new balls. We derive precise asymptotics of the probability of this event by embedding the process in continuous time. Quite surprisingly, fine control of this probability may be leveraged to derive a lower-tail large deviation principle (LDP) for $L = \sum_{i=1}^{n} ({S_i^2}/{i^2})$, where $\{S_n \colon n \geq 0\}$ is a simple symmetric random walk started at zero. We provide an alternative proof of the LDP via coupling to Brownian motion, and subsequent derivation of the LDP for a continuous-time analog of L. Finally, we turn our attention back to the urn process conditioned to be balanced, and provide a functional limit law describing the trajectory of the urn process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.