Abstract

BackgroundElectrical stimulation is widely used in experimental pain research but it lacks selectivity towards small nociceptive fibers. When using standard surface patch electrodes and rectangular pulses, large fibers are activated at a lower threshold than small fibers. Pin electrodes have been designed for overcoming this problem by providing a higher current density in the upper epidermis where the small nociceptive fibers mainly terminate. At perception threshold level, pin electrode stimuli are rather selectively activating small nerve fibers and are perceived as painful, but for high current intensity, which is usually needed to evoke sufficient pain levels, large fibers are likely co-activated. Long duration current has been shown to elevate the threshold of large fibers by the mechanism of accommodation. However, it remains unclear whether the mechanism of accommodation in large fibers can be utilized to activate small fibers even more selectively by combining pin electrode stimulation with a long duration pulse.ResultsIn this study, perception thresholds were determined for a patch- and a pin electrode for different pulse shapes of long duration. The perception threshold ratio between the two different electrodes was calculated to estimate the ability of the pulse shapes to preferentially activate small fibers. The perception threshold ratios were compared between stimulation pulses of 5- and 50 ms durations and shapes of: exponential increase, linear increase, bounded exponential, and rectangular. Qualitative pain perception was evaluated for all pulse shapes delivered at 10 times perception threshold. The results showed a higher perception threshold ratio for long duration 50 ms pulses than for 5 ms pulses. The highest perception threshold ratio was found for the 50 ms, bounded exponential pulse shape. Results furthermore revealed different strength-duration relation between the bounded exponential- and rectangular pulse shapes. Pin electrode stimulation at high intensity was mainly described as “stabbing”, “shooting”, and “sharp”.ConclusionThese results indicate that long duration pulses with a bounded exponential increase preferentially activate the small nociceptive fibers with a pin electrode and concurrently cause elevated threshold of large non-nociceptive fibers with patch electrodes.

Highlights

  • Electrical stimulation is widely used in experimental pain research but it lacks selectivity towards small nociceptive fibers

  • For interactions between pulse shapes and durations (IPT), the interaction is explained by the IPT for 5 ms Exponential increase (Exp), which was larger than the IPT of 5 ms Linear increase (Lin) and Rec

  • The IPTs for the pin electrode were larger for the 5 ms durations than for the 50 ms durations (Table 3)

Read more

Summary

Introduction

Electrical stimulation is widely used in experimental pain research but it lacks selectivity towards small nociceptive fibers. Long duration current has been shown to elevate the threshold of large fibers by the mechanism of accom‐ modation It remains unclear whether the mechanism of accommodation in large fibers can be utilized to activate small fibers even more selectively by combining pin electrode stimulation with a long duration pulse. For rectangular pulse shapes delivered with standard patch electrodes, large fibers have a lower activation threshold due to their large inter-nodal spacing and fiber diameter [6]. This combination of stimulation parameters and electrodes is typically used in transcutaneous electrical nerve stimulation to alleviate pain by activation of the large fibers [7]. This is contrary to the desired excitation of small fibers in experimental pain studies where co-activation of large fibers will interfere with pain processing and thereby complicate the interpretation of experimental pain results

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call