Abstract

ABSTRACTThe expected utility theory is the approach to measurement and utilization of qualitative, conceptual information. The subject of this paper is the design of methodology and algorithms for evaluation of expert utility that permit development of value-driven decision support in complex control and management systems. The approach is based on stochastic programming, the potential function method and on control theory. In the paper a control design for optimal control and stabilization of the specific growth rate of fed-batch biotechnological processes is presented. The control design is based on the Wang-Monod and Wang-Yerusalimsky kinetic models and their equivalent Brunovsky normal form. The control is written based on information of the growth rate. The mathematical formulations, presented here serve as basis for the tool development. The evaluation leads to the development of preferences-based decision support in machine learning environments and iterative complex control descriptions and design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.