Abstract
In evolutionary multi-objective optimization (EMO) the aim is to find a set of Pareto-optimal solutions. Such approach may be applied to multiple real-life problems, including weather routing (WR) of ships. The route should be optimal in terms of passage time, fuel consumption and safety of crew and cargo while taking into account dynamically changing weather conditions. Additionally it must not violate any navigational constraints (neither static nor dynamic). Since the resulting non-dominated solutions might be numerous, some user support must be provided to enable the decision maker (DM) selecting a single “best” solution. Commonly, multi-criteria decision making methods (MCDM) are utilized to achieve this goal with DM’s preferences defined a posteriori. Another approach is to apply DM’s preferences into the very process of finding Pareto-optimal solutions, which is referred to as preference-based EMO. Here the Pareto-set is limited to those solutions, which are compliant with the pre-configured user preferences. The paper presents a new tradeoff-based EMO approach utilizing configurable weight intervals assigned to all objectives. The proposed method has been applied to ship WR problem and compared with a popular reference point method: r-dominance. Presented results prove applicability and competitiveness of the proposed method to solving multi-objective WR problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.