Abstract

While it is well understood that edge computing can significantly facilitate IoT-related applications by deploying edge servers close to IoT devices, it also faces many challenges with numerous IoT devices connected and interacted. One of the most important issues is how to efficiently deploy edge servers under a certain budget with the explosive growth of data scale and user base. Existing studies for edge server placement fail to consider user’s query preferences since individual users may be interested in events in particular regions and are keen to receive up-to-date data streams that originate in regions of interest. In this article, we present a preference-aware edge server placement approach that offers better workload distribution in terms of both minimizing query latency and balancing the load of edge servers. To achieve this, we formulate edge server placement with multiobjective optimization as a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${p}$ </tex-math></inline-formula> -center problem and design two progressive approaches. We first propose quadratic integer programming (QIP) for small-scale data sets. Since the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${p}$ </tex-math></inline-formula> -center problem is an NP-hard problem, we thus propose a heuristic algorithm named TAKG (TAbu search with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> -means and Genetic algorithm) for large-scale data sets. To evaluate the utility of the proposed models, we have conducted a comprehensive evaluation on a large data set that is collected by more than 1900 IoT devices during 30 days. Experimental results indicate our approaches outperform all baselines significantly in terms of both query latency and load balancing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.