Abstract
Cd-substituted forms of the Bacillus cereus metallo-beta-lactamases (BCII) were studied by perturbed angular correlation of gamma-rays (PAC) spectroscopy. At very low [Cd]:[apo-beta-lactamase] ratios, two nuclear quadrupole interactions (NQI) were detected. For [Cd]:[apo-beta-lactamase] ratios between 0.8 and 3.0, two new NQIs appear, and the spectra show that up to 2 cadmium ions can be bound per molecule of apoenzyme. These results show the existence of two interacting Cd-binding sites in BCII. The relative populations of the two NQIs found at low [Cd]:[apo-beta-lactamase] ratios yielded a 1:3 ratio for the microscopic dissociation constants of the two different metal sites (when only one cadmium ion is bound). X-ray diffraction data at pH 7.5 demonstrate that also for Zn(II) two binding sites exist, which may be bridged by a solvent molecule. The measured NQIs could be assigned to the site with three histidines as metal ligands (three-His site) and to the site with histidine, cysteine, and aspartic acid as metal ligands (Cys site), respectively, by PAC measurements on the Cys168Ala mutant enzyme. This assignment shows that cadmium ions preferentially bind to the Cys site. This is in contrast to the preference of Zn(II) in the hybrid Zn(II)Cd(II) enzyme, where an analysis of the corresponding PAC spectrum showed that Cd(II) occupied the Cys site, whereby Zn(II) occupied the site with three histidines. The difference between Zn(II) and Cd(II) in affinity for the two sites is combined with the kinetics of hydrolysis of nitrocefin for different metal ion substitutions (Zn(2)E, ZnE, Cd(2)E, CdE, and ZnCdE) to study the function of the two metal ion binding sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.