Abstract

In this paper, we enriched Ant Colony Optimization (ACO) with interval outranking to develop a novel multi-objective ACO optimizer to approach problems with many objective functions. This proposal is suitable if the preferences of the Decision Maker (DM) can be modeled through outranking relations. The introduced algorithm (Interval Outranking-based ACO, IO-ACO) is the first ant-colony optimizer that embeds an outranking model to bear vagueness and ill-definition of the DM's preferences. This capacity is the most differentiating feature of IO-ACO because this issue is highly relevant in practice. IO-ACO biases the search towards the Region of Interest (RoI), the privileged zone of the Pareto frontier containing the solutions that better match the DM's preferences. Two widely studied benchmarks were utilized to measure the efficiency of IO-ACO, i.e., the DTLZ and WFG test suites. Accordingly, IO-ACO was compared with four competitive multi-objective optimizers: The Indicator-based Many-Objective ACO, the Multi-objective Evolutionary Algorithm Based on Decomposition, the Reference Vector-Guided Evolutionary Algorithm using Improved Growing Neural Gas, and the Indicator-based Multi-objective Evolutionary Algorithm with Reference Point Adaptation. The numerical results show that IO-ACO approximates the RoI better than leading metaheuristics based on approximating the Pareto frontier alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.