Abstract
With the ubiquity of smart devices, Spatial Crowdsourcing (SC) has emerged as a new transformative platform that engages mobile users to perform spatio-temporal tasks by physically traveling to specified locations. Thus, various SC techniques have been studied for performance optimization, among which one of the major challenges is how to assign workers the tasks that they are really interested in and willing to perform. In this paper, we propose a novel preference-aware spatial task assignment system based on workers’ temporal preferences, which consists of two components: History-based Context-aware Tensor Decomposition (HCTD) for workers’ temporal preferences modeling and preference-aware task assignment. We model worker preferences with a three-dimension tensor (worker-task-time). Supplementing the missing entries of the tensor through HCTD with the assistant of historical data and other two context matrices, we recover worker preferences for different categories of tasks in different time slots. Several preference-aware task assignment algorithms are then devised, aiming to maximize the total number of task assignments at every time instance, in which we give higher priorities to the workers who are more interested in the tasks. We conduct extensive experiments using a real dataset, verifying the practicability of our proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.