Abstract

Heat effects of the dissolution of decane and benzene in a model system of 1-octanol (OctOH)-N,N-dimethylformamide are measured at 298 and 318 K using a variable temperature calorimeter with an isotermic shell. The state of hydrocarbon molecules in the mixed solvent is studied using an extended coordination model and is compared to earlier data for ethyl acetate (EtOAc), DMF, OctOH, and tetramethyl hematoporphyrin (TMHP). It is shown that the polar carboxylic groups of porphyrin are preferably solvated by amide molecules due to stronger interaction with DMF, while nonpolar aliphatic groups are solvated by alcohol molecules. We conclude that a solvate shell of aromatic benzene is strongly enriched with DMF over the range of compositions, suggesting that the weakening of the preferable solvatation of porphyrin relative to EtOAc is due primarily to the influence of nonpolar substituents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.