Abstract
Isomorphisms of types are computational witnesses of logical equivalence with additional properties. The types/formulas A and B are isomorphic if there are functions (in a certain formalism) f : A → B and g : B → A such that g ○ f and f ○ g are equal in a certain sense to the identity on A and B, respectively. Typical such formalisms are extensions of simply typed λ-calculus, with βη-convertibility as equality relation. Another view of a pair of functions f : A → B and g : B → A (besides establishing the logical equivalence of A and B) is that f is invertible with left-inverse g, and it is then natural to relax the above symmetric condition to just g ○ f being equal to the identity on A. In this situation, A is called a retract of B, which is thus a natural generalisation of the notion of an isomorphism, while both these notions are refinements of the concept of logical equivalence in operational terms, that is, in terms of computable functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.