Abstract

Federal Institute for Geosciences and Natural Resources, Hannover, GermanyThe special issue of Natural Hazards and Earth SystemSciences entitled “Methods and strategies to evaluatelandslide hazard and risk”, which we had the fortune to edit,contains a selected set of contributions originally presentedat the General Assembly of the European GeosciencesUnion, in Vienna, Austria, on 13–18 April 2008. Themeeting proved to be a valuable opportunity to discussand compare methods, techniques and tools for discovering,evaluating, avoiding and mitigating landslide hazards andthe related risk. Novel approaches and case studies ofheuristic, statistical, and physically based models to evaluatelandslide hazards and risk at different geographical scalesand in different physiographic environments were presented.During the meeting, Theo van Asch, 2008 Sergey Solovievmedallist, gave an inspiring presentation on “Some issues andchallenges in landslide hazard modelling”. This presentationsummarized the state-of-the-art, physically based landslidemodelling, and set the path for future research on thischallenging topic.The special issue contains six of the 29 oral and postercontributions originally presented and discussed by morethan 50authors at the meeting. The six papers cover alarge spectrum of topics, from site-specific investigationsto global-scale landslide hazard assessments. van Aschand Malet (2009) focused on the potential transition ofsliding blocks (slumps) into flow-like processes due tothe generation of excess pore water pressure in undrainedconditions. The generation of excess pore water pressuremay be the consequence of the deformation of the landslidebody during motion. The authors propose and discuss twomodel concepts that are tested on two slumps that havedeveloped in secondary scarps of the Super-Sauze mudslidein the Barcelonnette area, Southern Alps, France.Correspondence to: P. Reichenbach(paola.reichenbach@irpi.cnr.it)Gunther and Thiel (2009) evaluated structurally-controlled¨failure susceptibility of fractured Cretaceous chalk rocks andtopographically-controlled shallow landslide susceptibilityof overlying glacial sediments in the Jasmund cliff area,Rugen Island, Germany. These authors adopted a combined¨methodology that involved spatially distributed kinematicalrock slope failure testing with tectonic fabric data, andphysically-based and inventory-based shallow landslidesusceptibility analyses. Romstad et al. (2009) presentedan innovative approach for regional hazard assessment ofNorwegian lakes exposed to tsunamis that can generatecatastrophic rockslides. The method successfully distin-guished between lakes with high and low rockslide potential.For each lake, the rockfall potential was determined basedon the topographical setting. For this reason, the rockfallpotential does not measure the probability of rockslides in thelakes. Van Den Eeckhaut et al. (2009) discussed a combinedlandslide inventory and susceptibility assessment based ondifferent mapping units carried out in the Flemish Ardennes,Belgium. The landslide susceptibility zonation was preparedthrough heuristic combination of, (i) a regional landslideinventory, (ii) a grid-cell-based map showing susceptibilityto landslide initiation, and (iii) a topographic-unit-based mapshowing the susceptibility to landslide spatial occurrence.Garc´ia-Rodr ´iguez and Malpica (2010) presented an approachfor assessing earthquake-triggered landslide susceptibilityusing artificial neural networks (ANN) in El Salvador.Modelling results were checked using independent landslideinformation, and revealed a good agreement between thelandslide inventory and the high susceptibility zoning. Thenew susceptibility zonation was compared critically to anexisting susceptibility zonation obtained through logisticregression analysis. Kirschbaum et al. (2009) presented apreliminary global landslide hazard algorithm developed toestimate areas of potential landslide occurrence in near real-time by combining a calculation of landslide susceptibilitywith satellite-derived rainfall estimates to forecast areas withPublished by Copernicus Publications on behalf of the European Geosciences Union.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.