Abstract
Quaternary Erzincan Volcanics (QEVs) from the Erzincan Basin consist of mega- and pheno-cryst-bearing high-K calc-alkaline dome lavas. Fourteen nearly phenocrystic domes, with a range of basaltic-andesite, andesite, dacite and rhyolite compositions, were emplaced in the North Anatolian Fault Zone. The emplacement ages yielded by the unspiked K–Ar technique range from 102 to 140 ka. The andesitic domes (each less than 3 km in diameter) contain amphibole megacrysts. Amphibole compositions show a linear variation from ferro-edenite, edenite to pargasite from rhyolite to andesite. Pargasitic amphibole megacrysts scattered into the groundmass are very similar in composition to the microlites. All plagioclases are <An 53 mol%. Oscillation types are An 32−50 whose variations range from 10 to 16 mol% An and have 10–150 μm in thickness. Pre-eruptive conditions, calculated from mega- and pheno-cryst composition, using pyroxene and two oxide thermometers and the Al-in-hornblende barometer, ranged from 918 to 837 °C and 6.6 to 4.3 kbar for andesitic magma, 824–755 °C and 4.6–4.2 kbar for dacitic magma to 803–692 °C and 4.3–3.9 kbar for rhyolitic magma, which correspond to a depth of >10 km for storage region of the crust. The fO 2 values vary from −14.25 to −15.35 log units which are plotted just below nickel–nickel oxide (NNO) buffers. The systematic decrease in thermobarometric results from andesite to rhyolite is consistent with a single magma reservoir moving upward through the crust followed by fractional crystallization. Textural and compositional relationships of mega- and pheno-crystic phases suggest that magma mixing, fluid input to the reservoir and fractional crystallization processes, with a small amount crustal contamination play key role in evolution of the QEVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemie der Erde - Geochemistry - Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.