Abstract

This study evaluated the effects of previous exposure to Transcranial Direct Current Stimulation (tDCS) on nociceptive, neuroinflammatory, and neurochemical parameters, in rats subjected to an incisional pain model. Forty adult male Wistar rats (60 days old; weighing ∼ 250 g) were divided into five groups: 1. control (C); 2. drugs (D); 3. surgery (S); 4. surgery + sham-tDCS (SsT) and 5. surgery + tDCS (ST). Bimodal tDCS (0.5 mA) was applied for 20 min/day/8 days before the incisional model. Mechanical allodynia (von Frey) was evaluated at different time points after surgery. Cytokines and BDNF levels were evaluated in the cerebral cortex, hippocampus, brainstem, and spinal cord. Histology and activity of myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) were evaluated in the surgical lesion sites in the right hind paw. The results demonstrate that the surgery procedure increased BDNF and IL-6 levels in the spinal cord levels in the hippocampus, and decreased IL-1β and IL-6 levels in the cerebral cortex, IL-6 levels in the hippocampus, and IL-10 levels in the brainstem and hippocampus. In addition, preemptive tDCS was effective in controlling postoperative pain, increasing BDNF, IL-6, and IL-10 levels in the spinal cord and brainstem, increasing IL-1β in the spinal cord, and decreasing IL-6 levels in the cerebral cortex and hippocampus, IL-1β and IL-10 levels in the hippocampus. Preemptive tDCS also contributes to tissue repair, preventing chronic inflammation, and consequent fibrosis. Thus, these findings imply that preemptive methods for postoperative pain management should be considered an interesting pain management strategy, and may contribute to the development of clinical applications for tDCS in surgical situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.