Abstract

We develop a new algorithm for scheduling the charging process of a large number of electric vehicles (EVs) over a finite horizon. We assume that EVs arrive at the charging stations with different charge levels and different flexibility windows. The arrival process is assumed to have a known distribution and that the charging process of EVs can be preemptive. We pose the scheduling problem as a dynamic program with constraints. We show that the resulting formulation leads to a monotone dynamic program with Lipschitz continuous value functions that are robust against perturbation of system parameters. We propose a simulation based fitted value iteration algorithm to determine the value function approximately, and derive the sample complexity for computing the approximately optimal solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.