Abstract
Borehole strain monitoring plays a critical role in earthquake precursor research. With the accumulation of observation data, traditional data processing methods struggle to handle the challenges of big data. This study proposes a segmented variational mode decomposition method and a GRU-LUBE deep learning network based on machine learning theory. The algorithm enhances data correlation during decomposition and effectively predicts borehole strain data changes. We extract pre-earthquake anomalies from four-component borehole strain data of the Guza station for two major earthquakes in Sichuan (Wenchuan and Lushan earthquakes), obtaining more comprehensive anomalies than previous studies. Statistical analysis reveals similar abnormal phenomena in the Guza station’s borehole strain data before both earthquakes, suggesting shared crustal stress accumulation and release patterns. These findings highlight the need for further research to improve earthquake prediction and preparedness through understanding underlying mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.