Abstract

Discovering drug–target (protein) interactions (DTIs) is of great significance for researching and developing novel drugs, having a tremendous advantage to pharmaceutical industries and patients. However, the prediction of DTIs using wet-lab experimental methods is generally expensive and time-consuming. Therefore, different machine learning-based methods have been developed for this purpose, but there are still substantial unknown interactions needed to discover. Furthermore, data imbalance and feature dimensionality problems are a critical challenge in drug-target datasets, which can decrease the classifier performances that have not been significantly addressed yet. This paper proposed a novel drug–target interaction prediction method called PreDTIs. First, the feature vectors of the protein sequence are extracted by the pseudo-position-specific scoring matrix (PsePSSM), dipeptide composition (DC) and pseudo amino acid composition (PseAAC); and the drug is encoded with MACCS substructure fingerings. Besides, we propose a FastUS algorithm to handle the class imbalance problem and also develop a MoIFS algorithm to remove the irrelevant and redundant features for getting the best optimal features. Finally, balanced and optimal features are provided to the LightGBM Classifier to identify DTIs, and the 5-fold CV validation test method was applied to evaluate the prediction ability of the proposed method. Prediction results indicate that the proposed model PreDTIs is significantly superior to other existing methods in predicting DTIs, and our model could be used to discover new drugs for unknown disorders or infections, such as for the coronavirus disease 2019 using existing drugs compounds and severe acute respiratory syndrome coronavirus 2 protein sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.