Abstract

Abstract Lost circulation is the most common drilling issue for infill drilling projects in Satun-Funan Fields, South Pattani Basin, Gulf of Thailand (GOT). The depleted sand is possible to be a root cause in many wells based on observation from resistivity time-lapse separation in depleted sands or shale nearby. Therefore, the objective of this study is to estimate fracture pressure related to the depleted sand and design an appropriate Equivalent Circulating Density (ECD) threshold for each well to avoid or minimize lost circulation and well control complication during drilling a new well. This study model is using Eaton (1969) equation. There are 3 input parameters which are Poisson's Ratio and pre-drilled estimated depletion pressure and depth. With limitations of no actual fracturing data and limited sonic log, the maximum ECD while lost circulation reading from Pressure While Drilling (PWD) tool and formation pressure test data were used to back-calculate for Poisson's Ratio and identified a relationship with depth. From the total of 68 wells in the Satun and Funan areas, the interpreted Poisson's Ratio ranges from 0.36 to 0.44 and its linear trend is apparently increasing with depth. To minimize the variation of back calculated Poisson's Ratio the local data become an important key for model validation and maintain the similarity of subsurface factors. This interpreted Poisson's ratio trend will be used to calculate for fracture pressure by incorporating with estimated depletion pressure and depth that expect to encounter in each planned well. The lowest fracture pressure in a planned well is used to prepare pre-drilled ECD management plan and a real-time well monitoring plan. Additionally, the model can be adjusted during the operational phase based on the new drilled well result. This alternative model was applied in 4 trial drilling projects in 2019 and fully implement in 6 drilling projects in 2020. The lost circulation can be prevented with value creation from expected gain reserves section is $57M and cost avoidance from non-productive time due to lost circulation is $3.4M. With an effort, good communication and great collaboration among cross-functional teams, the model success rate increases by 12%. However, there are some unexpected lost events occurred even though the maximum ECD lower than expected fracture pressure. This suspect as a combination of limitations and uncertainties on key input parameters and drilling parameters. In the future, the model is planned to expand to other gas fields in the Pattani Basin which will move to more infill phase and have higher chance of getting lost circulation to maximize benefits as the success case in Satun and Funan fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call