Abstract

Liver glycogen formation can occur via the direct (glucose----glucose-6-phosphate----glycogen) or indirect (glucose----C3 compounds----glucose-6-phosphate----glycogen) pathways. In the present study we have examined the effect of hyperglycemia on the pathways of hepatic glycogenesis, estimated from liver uridine diphosphoglucose (UDPglucose) specific activities, and on peripheral (muscle) glucose metabolism in awake, unstressed control and 90% pancreatectomized, diabetic rats. Under identical conditions of hyperinsulinemia (approximately 550 microU/ml), 2-h euglycemic (6 mM) and hyperglycemic (+5.5 mM and +11 mM) clamp studies were performed in combination with [3-3H,U-14C]glucose, [6-3H,U-14C]glucose, or [3-3H]glucose and [U-14C]lactate infusions under postabsorptive conditions. Total body glucose uptake and muscle glycogen synthesis were decreased in diabetic vs. control rats during all the clamp studies, whereas glycolytic rates were similar. By contrast, hyperglycemia determined similar rates of liver glycogen synthesis in both groups. Nevertheless, in diabetic rats, the contribution of the direct pathway to hepatic glycogen repletion was severely decreased, whereas the indirect pathway was markedly increased. After hyperglycemia, hepatic glucose-6-phosphate concentrations were increased in both groups, whereas UDPglucose concentrations were reduced only in the control group. These results indicate that in the diabetic state, under hyperinsulinemic conditions, hyperglycemia normally stimulates liver glycogen synthesis through a marked increase in the indirect pathway, which in turn may compensate for the reduction in the direct pathway. The increase in the hepatic concentrations of both glucose-6-phosphate and UDPglucose suggests the presence, in this diabetic rat model, of a compensatory "push" mechanism for liver glycogen repletion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.