Abstract
Histone lysine methylation (HKM) is an epigenetic change that establishes cell-specific gene expression and determines cell fates. In this study, we investigated the expression patterns of histone H3 lysine 9 methyltransferases (H3K9MTases) G9a (euchromatic histone lysine N-methyltransferase 2, Ehmt2), GLP (euchromatic histone lysine N-methyltransferase 1, Ehmt1), SETDB1 (SET domain, bifurcated 1), PRDM2 (PR domain containing 2), SUV39H1 (suppressor of variegation 3–9 homolog 1), and SUV39H2, as well as the distribution of 3 types of HKM at histone H3 lysine 9: mono- (H3K9me1), di- (H3K9me2), or tri-methylation (H3K9me3), during mouse growth plate development. In the forelimb cartilage primordial at embryonic day 12.5 (E12.5), none of the H3K9MTases were detected and H3K9me1, H3K9me2, and H3K9me3 were scarcely detected. At E14.5, the H3K9MTases were expressed at low levels in proliferating chondrocytes and at high levels in prehypertrophic and hypertrophic chondrocytes. Among the H3K9 methylations, H3K9me1 and H3K9me3 were markedly noted in these chondrocytes. At E16.5, G9, GLP, SETDB1, PRDM2, SUV39H1, and SUV39H2, as well as H3K9me1, H3K9me2, and H3K9me3, were detected in prehypertrophic and hypertrophic chondrocytes in the growth plate. Western blotting and real-time quantitative polymerase chain reaction analysis revealed the distributions of G9 and GLP proteins and the expression of all the H3K9MTase mRNAs in prehypertrophic and hypertrophic chondrocytes. These data suggest that H3K9 methyltransferases are predominantly expressed in prehypertrophic and hypertrophic chondrocytes, and that they could be involved in the regulation of gene expression and progression of chondrocyte differentiation by affecting the methylation state of histone H3 lysine 9 in the mouse growth plate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.