Abstract

The electronic properties of hole- and electron-doped manganites were probed by a combination of x-ray absorption and photoemission spectroscopies. Hole-doped La0.7Ba0.3MnO3 and electron-doped La0.7Ce0.3MnO3 thin films were epitaxially grown on SrTiO3 substrates by means of pulsed laser deposition. Ex-situ x-ray diffraction demonstrated the substrate/film epitaxy relation and in-situ low energy electron diffraction provided evidence of high structural order of film surfaces. By combining synchrotron x-ray absorption and x-ray photoemission spectroscopy, evidence of Mn ions into a 2+ state as a result of the Ce4+ substitution in the electron-doped manganites was provided. Angular resolved photo-emission spectroscopy (ARPES) results showed a predominance of z2-orbitals at the surface of both hole- and, unexpectedly, electron-doped manganites thus questioning the validity of the commonly accepted scenario describing the electron filling in manganites’ 3d orbitals in oxide manganites. The precise determination of the electronic and orbital properties of the terminating layers of oxide manganites paves the way for engineering multi-layered heterostructures thus leading to novel opportunities in the field of quantum electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call