Abstract

Prednisolone is a member of synthetic glucocorticoids which are widely used to treat chronic inflammatory diseases. In this study, neuronal degeneration and cell death, and glial reaction were investigated in the rat trigeminal ganglion (TG) and brainstem after subcutaneous injection of prednisolone for 7 days. Expression of c-Jun activating transcription factor 3 and caspase-3 was absent or infrequent in the TG, and cranial sensory and motor nuclei of saline- and prednisolone-treated animals. In these animals, distribution of calcitonin gene-related peptide-immunoreactive (-IR) neurons and nerve fibers was similar in the brainstem. In addition, the number of Iba1- and glial fibrillary acidic protein (GFAP)-IR cells with some processes in the brainstem was barely affected by prednisolone treatment. However, the treatment increased ramification of Iba1-IR processes in the subnucleus caudalis of the trigeminal sensory complex. Prednisolone scarcely influenced the morphology of GFAP-IR cells in the brainstem. Expression of p38 mitogen-activated protein kinase was very rare in the brainstem of saline- and prednisolone-treated animals. The present study suggests that microglia are activated by prednisolone in the subnucleus caudalis of the trigeminal sensory complex. The glucocorticoid may affect nociceptive transmission in the brainstem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.