Abstract

Protein-DNA interactions often take part in various crucial processes, which are essential for cellular function. The identification of DNA-binding sites in proteins is important for understanding the molecular mechanisms of protein-DNA interaction. Thus, we have developed an improved method to predict DNA-binding sites by integrating structural alignment algorithm and support vector machine-based methods. Evaluated on a new non-redundant protein set with 224 chains, the method has 80.7% sensitivity and 82.9% specificity in the 5-fold cross-validation test. In addition, it predicts DNA-binding sites with 85.1% sensitivity and 85.3% specificity when tested on a dataset with 62 protein-DNA complexes. Compared with a recently published method, BindN+, our method predicts DNA-binding sites with a 7% better area under the receiver operating characteristic curve value when tested on the same dataset. Many important problems in cell biology require the dense non-linear interactions between functional modules be considered. Thus, our prediction method will be useful in detecting such complex interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call