Abstract

Speech and music are remarkable aspects of human cognition and sensory-motor processing. Cognitive neuroscience has focused on them to understand how brain function and structure are modified by learning. Recent evidence indicates that individual differences in anatomical and functional properties of the neural architecture also affect learning and performance in these domains. Here, neuroimaging findings are reviewed that reiterate evidence of experience-dependent brain plasticity, but also point to the predictive validity of such data in relation to new learning in speech and music domains. Indices of neural sensitivity to certain stimulus features have been shown to predict individual rates of learning; individual network properties of brain activity are especially relevant in this regard, as they may reflect anatomical connectivity. Similarly, numerous studies have shown that anatomical features of auditory cortex and other structures, and their anatomical connectivity, are predictive of new sensory-motor learning ability. Implications of this growing body of literature are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.