Abstract

Factors responsible for the success or failure of orthodontic mini-implants (OMIs) in clinical settings are unclear. Failure of OMIs was found to be associated with increased maximum principal strain (MaxPN) when assessed using the subject-specific finite element (FE) modeling technique. The purpose of the present study was to identify factors that increase MaxPN and thereby predispose the OMI to failure. Using the FE method, MaxPN was calculated around 28 OMIs placed in orthodontic patients, 6 of which failed during the first 5months. Sixteen potential risk factors related to patients or to OMI position were measured on computerized tomographic images or calculated in FE models. The impact of these factors on MaxPN was verified using regression analysis. Three factors were found to have significant nonlinear relationships with MaxPN: cortical bone quality, vertical angulation of the OMI, and proximity of the OMI to the tooth in the direction of force. In conclusion, failure of an OMI is a multifactorial problem, and position and angulation of the implant are among the affecting factors. Slight apical inclination and positioning at least 1mm off the root in the direction of force may significantly decrease failure probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.