Abstract
In recent years, there has been a number of students who graduated late at Lubuk Alung 1st State Junior Highschool. This statement is supported by graduation data from Lubuk Alung 1st Satet Junior Highschool. Therefore, it is necessary to predict students’ graduation status to identify which factors influence the student’s graduation, which will also consequently help the school to solve problem more easily. To solve this problem, the researchers predict student graduation based on student graduation information. The attributes used are personal data related to students, student academic data, and data related to the work of the student’s parents. This research retrieved data on student graduation from schools that have been recapitulated. The classification algorithms used to predict students’ graduation are decision tree, random forest, and extreme gradient boosting with grid searchCV and k-fold=5. The prediction accuracy using the random forest algorithm outperforms the others with a value of 99.5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.