Abstract

Low- to middle-income countries (LMICs) now bear most of the stroke burden. In LMICs, stroke epidemiology and health care systems are different from HICs. Therefore, a high-income country (HIC)-based predictive model may not correspond to the LMIC stroke context. Identify the impact of modifiable variables in acute stroke management in Conakry, Guinea as potential predictors of favorable stroke outcome. Data were extracted from the Conakry stroke registry that includes 1018 patients. A logistic regression model was built to predict favorable stroke outcomes, defined as mRS 0–2. Age, admission NIHSS score, mean arterial blood pressure and capillary glycemia were chosen as covariates. Delay to brain CT imaging under 24 h from symptom onset, fever, presence of sores and abnormal lung auscultation were included as factors. NIHSS score on admission, age and ischemic stroke were included in the null model as nuisance parameters to determine the contribution of modifiable variables to predict stroke favorable outcome. Lower admission NIHSS, brain CT imaging within 24 h of symptoms onset and lower mean arterial blood pressure emerged as a significant positive predictors of favorable stroke outcome with respective odd ratios (OR) of 1.35 [1.28–1.43], 2.1 [1.16–3.8] and 1.01 [1.01–1.04]. The presence of fever or sores impacted negatively stroke favorable outcomes with OR of 0.3 [0.1–0.85] and 0.25 [0.14–0.45]. The area under receiver operating characteristic curves (AUC) of the model was 0.86. This model explained 44.5% of the variability of the favorable stroke outcome with 10.2% of the variability explained by the modifiable variables when admission NIHSS, and ischemic stroke were included in the null model as nuisance parameter. In the Conakry stroke registry, using a logistic regression to predict stroke favorable outcome, five variables that led to an AUC of 0.86: admission NIHSS, early brain CT imaging, fever, sores and mean blood pressure. This paves the way for future public health interventions to test whether modulating amendable variables leads to increased favorable stroke outcomes in LMICs.

Highlights

  • Low- to middle-income countries (LMICs) bear most of the stroke burden

  • National Institute of Health Stroke Scale (NIHSS) score on admission, age and ischemic stroke were included in the null model as nuisance parameters to determine the contribution of modifiable variables to predict stroke favorable outcome

  • This study used the Conakry stroke registry that includes over a thousand patients to identify four potentially modifiable variables: early brain computer tomography (CT) imaging, fever, sores and mean blood pressure in stroke hospital care that are associated with favorable stroke outcome in Guinea, a LMIC country in Sub-Saharan Africa

Read more

Summary

Introduction

Low- to middle-income countries (LMICs) bear most of the stroke burden. In LMICs, stroke epidemiology and health care systems are different from HICs. NIHSS score on admission, age and ischemic stroke were included in the null model as nuisance parameters to determine the contribution of modifiable variables to predict stroke favorable outcome.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.