Abstract
This systematic review aims to characterize the utility of machine learning to identify the predictors of smoking cessation outcomes and identify the machine learning methods applied in this area. In the current study, multiple searches occurred through December 9, 2022 in MEDLINE, Science Citation Index, Social Science Citation Index, EMBASE, CINAHL Plus, APA PsycINFO, PubMed, Cochrane Central Register of Controlled Trials, and the IEEE Xplore were performed. Inclusion criteria included various machine learning techniques, studies reporting cigarette smoking cessation outcomes (smoking status and the number of cigarettes), and various experimental designs (e.g., cross-sectional and longitudinal). Predictors of smoking cessation outcomes were assessed, including behavioral markers, biomarkers, and other predictors. Our systematic review identified 12 papers fitting our inclusion criteria. In this review, we identified gaps in knowledge and innovation opportunities for machine learning research in the field of smoking cessation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.