Abstract

Background/ObjectivesWe recently developed techniques to monitor intraspinal pressure (ISP) and spinal cord perfusion pressure (SCPP) from the injury site to compute the optimum SCPP (SCPPopt) in patients with acute traumatic spinal cord injury (TSCI). We hypothesized that ISP and SCPPopt can be predicted using clinical factors instead of ISP monitoring.MethodsSixty-four TSCI patients, grades A–C (American spinal injuries association Impairment Scale, AIS), were analyzed. For 24 h after surgery, we monitored ISP and SCPP and computed SCPPopt (SCPP that optimizes pressure reactivity). We studied how well 28 factors correlate with mean ISP or SCPPopt including 7 patient-related, 3 injury-related, 6 management-related, and 12 preoperative MRI-related factors.ResultsAll patients underwent surgery to restore normal spinal alignment within 72 h of injury. Fifty-one percentage had U-shaped sPRx versus SCPP curves, thus allowing SCPPopt to be computed. Thirteen percentage, all AIS grade A or B, had no U-shaped sPRx versus SCPP curves. Thirty-six percentage (22/64) had U-shaped sPRx versus SCPP curves, but the SCPP did not reach the minimum of the curve, and thus, an exact SCPPopt could not be calculated. In total 5/28 factors were associated with lower ISP: older age, excess alcohol consumption, nonconus medullaris injury, expansion duroplasty, and less intraoperative bleeding. In a multivariate logistic regression model, these 5 factors predicted ISP as normal or high with 73% accuracy. Only 2/28 factors correlated with lower SCPPopt: higher mean ISP and conus medullaris injury. In an ordinal multivariate logistic regression model, these 2 factors predicted SCPPopt as low, medium–low, medium–high, or high with only 42% accuracy. No MRI factors correlated with ISP or SCPPopt.ConclusionsElevated ISP can be predicted by clinical factors. Modifiable factors that may lower ISP are: reducing surgical bleeding and performing expansion duroplasty. No factors accurately predict SCPPopt; thus, invasive monitoring remains the only way to estimate SCPPopt.

Highlights

  • Traumatic spinal cord injury (TSCI) is a catastrophic condition: Over a third of patients do not recover sensation or voluntary movement below the injury [1]

  • We showed that patients with conus injuries and those with high intraspinal pressure (ISP) have low S­ CPPopt and that some patients with severe TSCI have no computable ­SCPPopt

  • There were no magnetic resonance imaging (MRI) features associated with ISP or ­SCPPopt

Read more

Summary

Introduction

Traumatic spinal cord injury (TSCI) is a catastrophic condition: Over a third of patients do not recover sensation or voluntary movement below the injury [1]. The technique is safe [6] and allows us to compute the spinal cord perfusion pressure (SCPP) as mean arterial pressure (MAP) minus ISP and the spinal pressure reactivity index (sPRx) as the running correlation coefficient between ISP and MAP. The U-shaped curve is not always present and may vary throughout the period of monitoring; when computed in patients with head injury or spinal cord injury, a U-shaped sPRx versus SCPP relation is present approximately 50% of the time. ISP, SCPP, S­ CPPopt, and sPRx for TSCI are, respectively, analogous to intracranial pressure (ICP), cerebral perfusion pressure (CPP), optimum CPP ­(CPPopt), and cerebrovascular pressure reactivity (PRx) for traumatic brain injury (TBI) [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call