Abstract
BackgroundLow absolute humidity (AH) has been associated with increased influenza virus survival and transmissibility and the onset of seasonal influenza outbreaks. Humidification of indoor environments may mitigate viral transmission and may be an important control strategy, particularly in schools where viral transmission is common and contributes to the spread of influenza in communities. However, the variability and predictors of AH in the indoor school environment and the feasibility of classroom humidification to levels that could decrease viral survival have not been studied.MethodsAutomated sensors were used to measure temperature, humidity and CO2 levels in two Minnesota grade schools without central humidification during two successive winters. Outdoor AH measurements were derived from the North American Land Data Assimilation System. Variability in indoor AH within classrooms, between classrooms in the same school, and between schools was assessed using concordance correlation coefficients (CCC). Predictors of indoor AH were examined using time-series Auto-Regressive Conditional Heteroskedasticity models. Classroom humidifiers were used when school was not in session to assess the feasibility of increasing indoor AH to levels associated with decreased influenza virus survival, as projected from previously published animal experiments.ResultsAH varied little within classrooms (CCC >0.90) but was more variable between classrooms in the same school (CCC 0.81 for School 1, 0.88 for School 2) and between schools (CCC 0.81). Indoor AH varied widely during the winter (range 2.60 to 10.34 millibars [mb]) and was strongly associated with changes in outdoor AH (p < 0.001). Changes in indoor AH on school weekdays were strongly associated with CO2 levels (p < 0.001). Over 4 hours, classroom humidifiers increased indoor AH by 4 mb, an increase sufficient to decrease projected 1-hour virus survival by an absolute value of 30% during winter months.ConclusionsDuring winter, indoor AH in non-humidified grade schools varies substantially and often to levels that are very low. Indoor results are predicted by outdoor AH over a season and CO2 levels (which likely reflects human activity) during individual school days. Classroom humidification may be a feasible approach to increase indoor AH to levels that may decrease influenza virus survival and transmission.
Highlights
Low absolute humidity (AH) has been associated with increased influenza virus survival and transmissibility and the onset of seasonal influenza outbreaks
Intra- and inter-room and inter-school variability We explored sensor agreement for indoor AH from January through March using concordance correlation coefficients (CCC) at 3-hour time intervals; details of
1.86 mb AH, absolute humidity; Auto-Regressive Conditional Heteroskedasticity (ARCH), auto-regressive conditional heteroskedasticity. *The regression coefficient shows the increase in average indoor AH associated with a 1 mb increase in outdoor AH
Summary
Low absolute humidity (AH) has been associated with increased influenza virus survival and transmissibility and the onset of seasonal influenza outbreaks. Relative humidity (RH) is the ratio (expressed as a percent) of the measured water content of air relative to the maximum possible water content of that air, which is dependent on the barometric pressure and temperature. Given these relationships, at a specified AH, the RH of colder air will be higher than that of warmer air. Seasonal influenza epidemics and waves of the 2009 A/ H1N1 influenza pandemic have been associated with decreases in outdoor AH [4,5] Despite these findings, the role of AH in viral transmission in indoor environments—where the bulk of influenza transmission in temperate regions likely occurs during winter—has not been examined
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.