Abstract
BackgroundThere is not enough evidence regarding how information obtained from general health check-ups can predict individual mortality based on long-term follow-ups and large sample sizes. This study evaluated the applicability of various health information and measurements, consisting of self-reported data, anthropometric measurements and laboratory test results, in predicting individual mortality.MethodsThe National Health Screening Cohort included 514,866 participants (aged 40–79 years) who were randomly selected from the overall database of the national health screening program in 2002–2003. Death was determined from causes of death statistics provided by Statistics Korea. We assessed variables that were collected at baseline and repeatedly measured for two consecutive years using traditional and time-variant Cox proportional hazards models in addition to random forest and boosting algorithms to identify predictors of 10-year all-cause mortality. Participants’ age at enrollment, lifestyle factors, anthropometric measurements and laboratory test results were included in the prediction models. We used c-statistics to assess the discriminatory ability of the models, their external validity and the ratio of expected to observed numbers to evaluate model calibration. Eligibility of Medicaid and household income levels were used as inequality indexes.ResultsAfter the follow-up by 2013, 38,031 deaths were identified. The risk score based on the selected health information and measurements achieved a higher discriminatory ability for mortality prediction (c-statistics = 0.832, 0.841, 0.893, and 0.712 for Cox model, time-variant Cox model, random forest and boosting, respectively) than that of the previous studies. The results were externally validated using the community-based cohort data (c-statistics = 0.814).ConclusionsIndividuals’ health information and measurements based on health screening can provide early indicators of their 10-year death risk, which can be useful for health monitoring and related policy decisions.
Highlights
General health check-ups are a screening procedure targeting the currently healthy population to detect diseases earlier and to intervene to better prevent chronic diseases
This study evaluated the applicability of various health information and measurements, consisting of self-reported data, anthropometric measurements and laboratory test results, in predicting individual mortality
Individuals’ health information and measurements based on health screening can provide early indicators of their 10-year death risk, which can be useful for health monitoring and related policy decisions
Summary
General health check-ups are a screening procedure targeting the currently healthy population to detect diseases earlier and to intervene to better prevent chronic diseases. Check-ups usually include a medical history, anthropometric measurements and laboratory tests such as simple blood and urine tests. These visits might help detect and prevent chronic diseases, but there is insufficient evidence regarding the effectiveness of interventions based on periodic health check-ups and the predictive value of the information obtained. Two nationwide population-based cohort studies in Korea and Taiwan reported a favorable effect of health check-ups, such as lower all-cause and cardiovascular disease (CVD) mortality rate and early treatment of hypertension, diabetes, and dyslipidemia [3, 4]. There is not enough evidence regarding how information obtained from general health check-ups can predict individual mortality based on long-term follow-ups and large sample sizes. This study evaluated the applicability of various health information and measurements, consisting of self-reported data, anthropometric measurements and laboratory test results, in predicting individual mortality
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.