Abstract
IntroductionThis study aimed to describe the rates and causes of unplanned readmissions within 30 days following carotid artery stenting (CAS) and to use artificial intelligence machine learning analysis for creating a prediction model for short-term readmissions. The prediction of unplanned readmissions after index CAS remains challenging. There is a need to leverage deep machine learning algorithms in order to develop robust prediction tools for early readmissions.MethodsPatients undergoing inpatient CAS during the year 2017 in the US Nationwide Readmission Database (NRD) were evaluated for the rates, predictors, and costs of unplanned 30-day readmission. Logistic regression, support vector machine (SVM), deep neural network (DNN), random forest, and decision tree models were evaluated to generate a robust prediction model.ResultsWe identified 16,745 patients who underwent CAS, of whom 7.4% were readmitted within 30 days. Depression [p < 0.001, OR 1.461 (95% CI 1.231–1.735)], heart failure [p < 0.001, OR 1.619 (95% CI 1.363–1.922)], cancer [p < 0.001, OR 1.631 (95% CI 1.286–2.068)], in-hospital bleeding [p = 0.039, OR 1.641 (95% CI 1.026–2.626)], and coagulation disorders [p = 0.007, OR 1.412 (95% CI 1.100–1.813)] were the strongest predictors of readmission. The artificial intelligence machine learning DNN prediction model has a C-statistic value of 0.79 (validation 0.73) in predicting the patients who might have all-cause unplanned readmission within 30 days of the index CAS discharge.ConclusionsMachine learning derived models may effectively identify high-risk patients for intervention strategies that may reduce unplanned readmissions post carotid artery stenting.Central IllustrationFigure 2: ROC and AUPRC analysis of DNN prediction model with other classification models on 30-day readmission data for CAS subjectsSupplementary InformationThe online version contains supplementary material available at 10.1007/s12325-021-01709-7.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.