Abstract

We propose a ranking and selection procedure to prioritize relevant predictors and control false discovery proportion (FDP) in variable selection. Our procedure utilizes a new ranking method built upon the de-sparsified Lasso estimator. We show that the new ranking method achieves the optimal order of minimum non-zero effects in ranking relevant predictors ahead of irrelevant ones. Adopting the new ranking method, we develop a variable selection procedure to asymptotically control FDP at a user-specified level. We show that our procedure can consistently estimate the FDP of variable selection as long as the de-sparsified Lasso estimator is asymptotically normal. In simulations, our procedure compares favorably to existing methods in ranking efficiency and FDP control when the regression model is relatively sparse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.