Abstract

AbstractThe concept of state is central to dynamical systems. In any timeseries problem—such as filtering, planning or forecasting—models and algorithms summarize important information from the past into some sort of state variable. In this chapter, we start with a broad examination of the concept of state, with emphasis on the fact that there are many possible representations of state for a given dynamical system, each with different theoretical and computational properties. We then focus on models with predictively defined representations of state that represent state as a set of statistics about the short-term future, as opposed to the classic approach of treating state as a latent, unobservable quantity. In other words, the past is summarized into predictions about the actions and observations in the short-term future, which can be used to make further predictions about the infinite future.While this representational idea applies to any dynamical system problem, it is particularly useful in a model-based RL context, when an agent must learn a representation of state and a model of system dynamics online: because the representation (and hence all of the model’s parameters) are defined using only statistics of observable quantities, their learning algorithms are often straightforward and have attractive theoretical properties. Here, we survey the basic concepts of predictively defined representations of state, important auxiliary constructs (such as the systems dynamics matrix), and theoretical results on their representational power and learnability.KeywordsBelief StateCore TestNeural Information Processings SystemPolicy GradientFinite State ControllerThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.