Abstract

To assess the accuracy and determine the optimal threshold of sonographic cervical length (CL) for the prediction of preterm delivery (PTD) in women with twin pregnancies presenting with threatened preterm labor (PTL). This was a retrospective study of women with twin pregnancies who presented with threatened PTL and underwent sonographic measurement of CL in a tertiary center. The accuracy of CL in predicting PTD in women with twin pregnancies was compared with that in a control group of women with singleton pregnancies. Overall, 218 women with a twin pregnancy and 1077 women with a singleton pregnancy, who presented with PTL, were included in the study. The performance of CL as a predictive test for PTD was similar in twins and singletons, as reflected by the similar correlation between CL and the examination-to-delivery interval (r, 0.30 vs 0.29; P = 0.9), the similar association of CL with risk of PTD, and the similar areas under the receiver-operating characteristics curves for differing delivery outcomes (range, 0.653-0.724 vs 0.620-0.682, respectively; P = 0.3). The optimal threshold of CL for any given target sensitivity or specificity was lower in twin than in singleton pregnancies. However, in order to achieve a negative predictive value of 95%, a higher threshold (28-30 mm) should be used in twin pregnancies. Using this twin-specific CL threshold, women with twins who present with PTL are more likely to have a positive CL test, and therefore to require subsequent interventions, than are women with singleton pregnancies with PTL (55% vs 4.2%, respectively). In women with PTL, the performance of CL as a test for the prediction of PTD is similar in twin and singleton pregnancies. However, the optimal threshold of CL for the prediction of PTD appears to be higher in twin pregnancies, mainly owing to the higher baseline risk for PTD in these pregnancies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.