Abstract
Smart Grid (SG) networks include an associated data network for the transmission and reception of control data related to the electric power supply service. A subset of this data network is the SG Neighborhood Area Network (SG NAN), whose objective is to interconnect the subscribers’ homes with the supplier control center. The data flows transmitted through these SG NANs belong to different applications, giving rise to the need for different quality of service requirements. Additionally, other subscriber appliances could use this network to communicate over the Internet. To avoid network congestion, as well as to differentiate the quality of service (QoS) received by the different data flows, a congestion control mechanism with traffic differentiation capabilities is required. The main contribution of this work is the proposal of a new congestion control mechanism based on machine learning techniques to try to guarantee the different QoS requirements to the different data flows. A main problem when applying machine learning techniques is the need for datasets to be used in the training steps. In this sense, a second contribution of this article is the proposal of a method to generate such datasets by means of simulation techniques. The proposed mechanism is then evaluated in the context of a wireless SG NAN. The nodes of this network are the subscriber’s smart meters, which in turn perform the function of concentrating the data traffic sent and received by the rest of the home appliances. Besides, different machine learning classification methods are taken into account. The evaluation carried out shows significant improvements in terms of network throughput, transit time, and quality of service differentiation. Finally, the computational cost of the algorithms used in this proposal has also been evaluated, using real low-cost IoT hardware platforms.
Highlights
T HE traditional electrical energy distribution networks have evolved to the so-called Smart Grids (SG), in which an associated data communication network is available to complement the traditional electrical infrastructure
The goal and main contribution of this work is the proposal and evaluation of a new congestion control mechanism for SG Neighborhood Area Network (SG Neighborhood Area Network (NAN)), based on machine learning techniques and able to differentiate between traffic flows with different quality of service (QoS) requirements
RELATED WORK The improvement of the performance offered by wireless SG NANs is a field of work that has attracted the attention of several research groups
Summary
T HE traditional electrical energy distribution networks have evolved to the so-called Smart Grids (SG), in which an associated data communication network is available to complement the traditional electrical infrastructure. The goal and main contribution of this work is the proposal and evaluation of a new congestion control mechanism for SG NANs, based on machine learning techniques and able to differentiate between traffic flows with different QoS requirements. Every time a source node must transmit a packet belonging to a certain flow, it will apply a decision algorithm to predict, as a function of the current network status (utilization factors of the wireless channels and buffer occupancy of the network nodes), if the packet will be correctly delivered (on time) to its destination, without compromising the correct transmission of higher category packets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.