Abstract

We present a theoretical study of charge transport in disordered semiconducting polymers that relates the charge mobility to the chemical structure and the physical morphology in a novel multiscale approach. Our studies, focusing on poly(9,9-dioctylfluorene) (PFO), show that the charge mobility is dominated by pathways with the highest interchain charge-transfer rates. We also find that disorder is not always detrimental to charge transport. We find good agreement with experimental time-of-flight mobility data in highly aligned PFO films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call