Abstract
Abstract Based on decadal hindcasts initialized every five years over the period 1960–2000, the predictive skill of annual-mean regional steric sea level and associated mechanisms are investigated. Predictive skill for steric sea level is found over large areas of the World Ocean, notably over the subtropical Atlantic and Pacific Oceans, along the path of the North Atlantic Current, and over the Indian and Southern Oceans. Mechanisms for the predictability of the thermosteric and halosteric contributions to the steric signal are studied by separating these components into signals originating from processes within and beneath the mixed layer. Contributions originating from below the mixed layer are further decomposed into density-related (isopycnal motion term) and density-compensated (spice term) changes. In regions of the subtropical Pacific and Atlantic Oceans, predictive skill results from the interannual variability associated with the contribution from isopycnal motion to thermosteric sea level. Skill related to thermosteric mixed layer processes is found to be important in the subtropical Atlantic, while the spice contribution shows skill over the subpolar North Atlantic. In the subtropics, the high predictive skill can be rationalized in terms of westward-propagating baroclinic Rossby waves for a lead time of 2–5 yr, as demonstrated using an initialized Rossby wave model. Because of the low Rossby wave speed in high latitudes, this process is not separable from the persistence there.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.