Abstract

This paper presents an online tracking optimization scheme for sensor guided robotic manipulators by associating the sensor information, manipulator dynamics and path generator model. Feedback linearization-decoupling permits the use of linear SISO prediction models for the dynamics of each robot joint. Scene interpretation of CCD-camera images generates spline fitted segments of future trajectory. In the sensor vision field the proposed optimization criteria minimizes the error between state variables of the prediction model and the state variables of the spline trajectory generator. These techniques, allied with the separation of disturbance rejection and path-tracking performance by the proposed feedforward following model predictive servo-controller design, permit very high path tracking dynamics (and consequently small errors). Experimental results on implementation of the CCD-camera guided hydraulic robot and welding robot demonstrates the practical relevance of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.