Abstract

We use S4 discrete group to construct a neutrino flavour model which leads to T M1 mixing and is consistent with the neutrino oscillation data. Using the model’s constrained parameter space, we predict the values of Dirac C P phase and the light neutrino mass as −1 < sin δ < −0.9 and 1.7 < m1(meV) < 5.5 respectively. We thoroughly examine the usefulness of this model in explaining the observed baryon asymmetry of the Universe. Near-maximal breaking of CP symmetry (arising due to the TM1 constraint) helps us in generating adequate baryon asymmetry through leptogenesis. We study the evolution of the asymmetry (generated due to the decay of the heavy Majorana neutrinos) starting from the primordial Universe in two different ways (i)explicitly solving network of Boltzmann equations, (ii) using approximate analytic solution and we have shown the extent of their equivalence. Nearly accurate analytical fits are used thereafter to evaluate baryon asymmetry for the whole parameter space allowed by 3σ global fit of oscillation data and to impose a constraint on the yet unbounded mass scale parameter of Dirac neutrino mass matrix. Furthermore, significant contribution of N2 decay in the context of flavoured leptogenesis is also estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call