Abstract

Humic acids (HAs) have been shown to dominate the photodegradation of steroid estrogens in natural waters. Nevertheless, how the photosensitizing ability of HAs relates to their structural and optical characteristics remains largely unknown. In this study, 17α-ethynylestradiol (EE2) was selected as a model compound to study to what extent easily-measurable characteristics of HAs might be used to predict their photosensitization potency. HAs were extracted from sediments of two different sources, and then subjected to structural and optical properties characterization using elemental analyzer, UV–vis spectroscopy and fluorescence spectroscopy. Photochemical experiments show that the HAs from the two sources can effectively meditate EE2 photodegradation. Although with drastically different structural and optical properties, the photosensitizing ability of these HAs towards EE2 can be well described by simple linear regressions using a spectroscopic index, the spectral slope ratio (SR). This optical indicator is correlated with various physicochemical properties of HAs, including the molecular weight, lignin content, charge-transfer interaction potential, photobleaching extent and sources. No universal prediction model could be established for predicting EE2 photodegradation kinetics on the basis of SR, but in specific waters SR could be a powerful indictor for predicting the EE2 photodegradation sensitized by HAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call