Abstract
BackgroundE2F6 is a member of the E2F transcription factor family. Numerous studies have demonstrated that E2F6 is critical to cancer development and progression, but its role in cancer immunotherapy remains unclear. MethodsGenotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases were used to obtain RNA-seq data for cancer and normal tissues, and we utilized the cBioPortal to analyze E2F6 genomic alterations in pan-cancer. The protein localization of E2F6 was obtained using the Human Protein Atlas (HPA), and the upregulation of E2F6 expression in clinical glioblastoma multiforme (GBM) tissues was detected by Western blot analysis. The ComPPI website was used to analyze the protein interaction information of E2F6. To evaluate the role of E2F6 in pan-cancer prognosis, we used univariate Cox regression and Kaplan-Meier methods, and gene set enrichment analysis (GSEA) was utilized to identify markers associated with E2F6 expression in tumors. TIMER 2.0 was used to study E2F6-related immune cell infiltration in tumor tissues, and the correlation of E2F6 with immunotherapy biomarkers was investigated using Spearman correlation analysis. The role of E2F6 in the cell cycle was analyzed by flow cytometry, and the Cell Counting Kit-8 (CCK-8) and colony formation assays were utilized to determine the proliferative ability of cells. ResultsIn most tumor types, E2F6 was highly expressed and was a good predictor of prognosis. E2F6 was significantly related to markers of immune activation, tumor immune cell infiltration, and immune regulators. Furthermore, E2F6 knockdown significantly attenuated the proliferative ability of glioma cells. Finally, E2F6 effectively predicted anti-programmed cell death 1 (PD1) treatment response. ConclusionE2F6 is an effective biomarker that predicts the prognosis of cancer patients treated with anti-immune checkpoint therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.