Abstract

The disposition of inhalation anaesthetics is governed by the factors described in the Fick principle. We have recalibrated a previously validated physiological model for enflurane closed-circuit inhalation anaesthesia, using individual continuous cardiac output measurements as well as age-related enflurane solubility coefficients as inputs to the model. Two model versions using 'calculated' (Brody's formula) or 'measured' (thoracic electrical bioimpedance) cardiac output values, and two versions with 'standard' (fixed) or 'age-related' solubility coefficients were formulated. Data from 62 ophthalmic surgical patients were used to validate the predictive performance of the four model versions. The root mean squared errors (total error) and scatters (error variation) were similar with the extended model versions, but the group biases (systematic error component) were significantly less with the model versions that included age-related solubility compared with the versions using standard solubility coefficients (bias -0.76/-0.78% vs -3.44/-3.60%). The inclusion of age-related solubility coefficients but not of continuous cardiac output measurements improves the predictive performance of the physiological model for closed-circuit inhalation anaesthetic conditions in routine clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.