Abstract

We consider model predictive path-following control (MPFC) without stabilizing terminal constraints or costs. We investigate sufficient stability conditions in the framework of cost controllability. Then, we analyze cost controllability for path-following problems of differentially flat systems. Using this result, we establish that under suitable assumptions MPFC without terminal constraints or penalties leads to asymptotic stability provided the prediction horizon is sufficiently long. Further, the proposed methodology allows to quantify a stabilizing prediction horizon. We illustrate our findings considering a robotic manipulator example. We explicitly verify cost controllability and conduct numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.