Abstract

A key feature of an autonomous vehicle is the ability to re-plan its motion from a starting configuration (position and orientation) to a goal configuration while avoiding obstacles. Moreover, it should react robustly to uncertainties throughout its maneuvers. We present a predictive approach for autonomous navigation that incorporates the shortest path, obstacle avoidance, and uncertainties in sensors and actuators. A car-like robot is considered as the autonomous vehicle with nonholonomic and minimum turning radius constraints. The results (arcs and line segments) from a shortest-path planner are used as a reference to find action sequence candidates. The vehicle’s states and their corresponding probability distributions are predicted to determine a future reward value for each action sequence candidate. Finally, an optimal action policy is calculated by maximizing an objective function. Through simulations, the proposed method demonstrates the capability of avoiding obstacles as well as of approaching a goal. The regenerated path will incorporate uncertainty information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.