Abstract
This Letter discusses the benefits of introducing Machine Learning techniques in multi-view streaming applications. Widespread use of machine learning techniques has contributed to significant gains in numerous scientific and industry fields. Nonetheless, these have not yet been specifically applied to adaptive interactive multimedia streaming systems where, typically, the encoding bit rate is adapted based on resources availability, targeting the efficient use of network resources whilst offering the best possible user quality of experience (QoE). Intrinsic user data could be coupled with such existing quality adaptation mechanisms to derive better results, driven also by the preferences of the user. Head-tracking data, captured from camera feeds available at the user side, is an example of such data to which Recurrent Attention Models could be applied to accurately predict the focus of attention of users within videos frames. Information obtained from such models could be used to assist a preemptive buffering approach of specific viewing angles, contributing to the joint goal of maximising QoE. Based on these assumptions, a research line is presented, focusing on obtaining better QoE in an already existing multi-view streaming system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.